

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 32 (2012) [1413–1417](dx.doi.org/10.1016/j.jeurceramsoc.2011.04.008)

www.elsevier.com/locate/jeurceramsoc

Fabrication of $Si₃N₄$ -based composite containing needle-like TiN synthesized using NH_3 nitridation of TiO₂ nanofiber

Hajime Kiyono^{a,*}, Yuho Miyake^a, Yusuke Nihei^a, Tomoki Tumura^b, Shiro Shimada^a

^a *Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo 060-8628, Japan* ^b *Faculty of Engineering, Oita University, Dannoharu, Oita 870-1192, Japan*

Available online 4 May 2011

Abstract

A Si3N4 composite containing needle-like TiN particles (7 vol%) was fabricated. Needle-like TiN particles several micrometers long were synthesized using NH₃ nitridation of TiO₂ nanofiber, which was obtained using hydrothermal treatment. A mixed powder of α -Si₃N₄ and the needle-like TiN particles with additives was hot pressed at 24 MPa and 1850 °C for 1 h in N₂ atmosphere. Mechanical properties of the composite were compared with those of a composite containing rounded TiN particles and a monolithic β -Si₃N₄ ceramic. The Si₃N₄ matrix of the composites containing TiN was mainly *a*-phase, suggesting that the $\alpha-\beta$ phase transformation of $Si₃N₄$ was inhibited by the presence of TiN. Although fracture strength of the composites was lower, fracture toughness was comparable to that of monolithic β -Si₃N₄ ceramics. Hardness of the composites was about 19 GPa and was greater than that of the monolithic $β$ -Si₃N₄ ceramic.

© 2011 Elsevier Ltd. All rights reserved.

Keywords: Composite; Titanium nitride; Silicon nitride; Needle; Nanofiber; Hot pressing

1. Introduction

TiN is a promising material for coatings or additives in composites because of its high hardness characteristic, high fracture toughness, good abrasive resistance, good adhesive properties, and high electron conductivity. Fabrication of TiN–Si₃N₄ composites has been reported to give electric conductivity or to improve fracture toughness.^{[1–4](#page-4-0)} In these reports, the size of TiN particles has been controlled to the micrometer^{[2,3](#page-4-0)} or nanometer^{[4](#page-4-0)} range but the shape has not been intentionally controlled. It is well known that introducing needle-like grains into a ceramic body improves fracture toughness by virtue of a deflection and bridging effect against a crack propagating. Fibers or whiskers of TiN have been synthesized using methods, such as chemical vapor deposition,^{[5](#page-4-0)} nitridation of TiO₂ fibers,^{[6](#page-4-0)} and carbothermal reduction of TiO₂ with additions.⁷ [It](#page-4-0) is known that TiO₂ is easily nitrided to TiN using NH3 atmosphere at elevated temperatures according to the following reaction:

$$
2TiO_2 + 2NH_3 \to 2TiN + 3H_2O + 1/2O_2. \tag{1}
$$

 $TiO₂$ nanofibers with large specific surface area can be obtained by using the hydrothermal treatment of $TiO₂$ powder in a basic solution. $8,9$ The authors have recently demonstrated that partially nitrided nanofiber has high rate charge-discharge properties can be used as an electrode material for lithium ion batteries.^{[10](#page-4-0)} In the study, we found that the nitrided nanofiber possesses a needle-like shape several μ m long, which originates from the nanofiber. However, nitridation conditions and other applications of the nitrided nanofiber have not been investigated. In the present paper, we investigate the nitridation conditions necessary to synthesize needle-like TiN particles by the nitridation of $TiO₂$ nanofibers and fabricate $Si₃N₄$ -based composites containing the needle-like TiN particles.

2. Experimental procedures

2.1. Synthesis of needle-like TiN particles

TiO2 nanofibers were synthesized by hydrothermal treatment of TiO₂ powder^{[8,11](#page-4-0)} using rutile TiO₂ powder (CR-EL, 0.3 μ m; Ishihara Industry Co., Japan). The dispersion of $10 \text{ wt\% } TiO₂$ powder in 47 wt% KOH and 43 wt% H₂O was heated at 150 °C for 150 h in a stainless jacket lined with TEFLON. The powder was then washed with 0.1 mol/L HCl solution to remove

[∗] Corresponding author. Tel.: +81 11 706 6578; fax: +81 11 706 6578. *E-mail address:* kiyono@eng.hokudai.ac.jp (H. Kiyono).

^{0955-2219/\$} – see front matter © 2011 Elsevier Ltd. All rights reserved. doi[:10.1016/j.jeurceramsoc.2011.04.008](dx.doi.org/10.1016/j.jeurceramsoc.2011.04.008)

potassium and dried. To determine the nitridation conditions needed to transform $TiO₂$ nanofibers to TiN, thermogravimetric analysis (TGA) in NH3/Ar atmosphere was carried out. Details of the TGA equipment are described elsewhere.^{[12](#page-4-0)} About 50 mg of the TiO₂ nanofibers was heated to 1200 °C at 5 °C/min in NH3/Ar (50/50 kPa). The weight loss during heating was monitored by an electric balance (Cahn D-200, USA). Nitridation was also carried out using a horizontal tube furnace using the same conditions as that of TGA except for the amount of the sample, which was about 0.5 g. The heat-treated samples were then subjected to X-ray diffraction (XRD, RIGAKU RINT, Japan) analysis, transmission electron microscopic (TEM, JEOL JEM-2000FX, Japan) observation, and X-ray photo electron spectroscopic (XPS, SHIMADZU ESCA-750, Japan) analysis.

2.2. Fabrication and characterization of composites

 α -Si₃N₄ (SN-E10, Ube industry Co., Japan), Y₂O₃ (Koujyundo Chemical Co., Japan), and Al_2O_3 (Kanto Chemical Co., Japan) powders were used. The powders of α -Si₃N₄ with 5 wt% Y_2O_3 and 5 wt% Al₂O₃ were mixed using a ball mill containing plastic-coated iron balls in ethanol. After the 24 h ball milling, a dispersion of the $TiO₂$ nanofibers in water was added to the mixed powder of α -Si₃N₄ with Y₂O₃ and Al₂O₃ in ethanol and was mixed for 1 h. The amount of added $TiO₂$ nanofiber corresponds to 7 vol% TiN in the fabricated composites. The mixed powder was dried and heated using a horizontal tube furnace in NH₃ atmosphere at 1000 °C for 4 h to transform TiO₂ to TiN without the nitridation of Al_2O_3 and Y_2O_3 . The heated powder was hot pressed under a uniaxial pressure of 24 MPa at 1850 °C for 1 h in N₂ atmosphere (Composite A). For comparison, a $TiN-Si₃N₄$ composite having the same composition as that of Composite A, but with TiN fabricated from $TiO₂$ (CR-EL) powder without hydrothermal treatment, (Composite B) and a monolithic Si₃N₄ ceramic were fabricated. Hot pressing conditions for Composite B and the monolithic $Si₃N₄$ were the same as those of Composite A. The composites and monolithic $Si₃N₄$ were characterized by XRD and scanning electron microscope (SEM, JEOL JSM-6300F, Japan). Fracture strength was determined using a four-point bending test with a crosshead speed of 0.05 mm/min. Fracture toughness and hardness were measured using Vickers indentation method at an applied pressure of 195 and 49 N, respectively.

3. Results and discussion

3.1. Nitridation of TiO2 nanofibers

Fig. 1 shows non-isothermal TGA curves of as-received $TiO₂$ powder (CR-EL) and $TiO₂$ nanofibers in NH₃/Ar (50/50 kPa). The weight of the as-received $TiO₂$ powder started to decrease from about $720\degree C$ but the slope of the weight loss curve decreased at 870 ◦C. At about 1100 ◦C, the weight loss stopped at about 21%, which was close to the theoretical weight loss of 22.5% based on Eq. [\(1\).](#page-0-0) Using XRD analysis, it was found that the sample was transformed to TiN after the TGA. Based on the results of TGA and XRD analysis, nitridation of as-

Fig. 1. TGA results of (a) as-received TiO₂ and (b) TiO₂ nanofibers in NH₃/Ar (50/50 kPa) atmosphere with a heating rate of 5° C/min.

received TiO₂ powder started at 720° C and the powder was completely nitrided at $1100\,^{\circ}\text{C}$ in NH₃/Ar atmosphere. However, the weight of $TiO₂$ nanofibers started to decrease at room temperature, reaching a plateau at temperatures between 400 and 720 \degree C. After the plateau, the weight decreased again to 30% at 1030 ◦C, showing no significant change above that temperature.

 XRD patterns of the $TiO₂$ nanofibers heated to various temperatures using the horizontal tube furnace are shown in Fig. 2. The original pattern of $TiO₂$ nanofibers showed small and broad peaks corresponding to those of $H_2Ti_3O_7$.^{[13](#page-4-0)} The sample heated to 800 ◦C showed definitive peaks of anatase, indicating that the original TiO₂ nanofibers were dehydrated and crystallized. The TGA analysis showed that the first weight loss was about 20%, which waslessthan the estimated value of 7.0%, calculated from the equation:

$$
H_2Ti_3O_7 \to 3TiO_2 + H_2O. \tag{2}
$$

The observed greater weight loss suggests that the nanofibers contained a large amount of physically adsorbed H_2O or the presence of hydrated species other than $H_2Ti_3O_7$. The XRD pattern of the sample heated up to 900 ◦C showed small peaks of rutile

Fig. 2. XRD patterns of (a) as-synthesized $TiO₂$ nanofibers and ones heated at (b) 800 °C, (c) 900 °C, and (d) 1000 °C with no holding time and (e) at 1000 °C for 1 h in NH3/Ar (50/50 kPa).

Table 1 Results of XPS and XRD analysis of $TiO₂$ nanofibers heated to various temperatures in NH₃ atmosphere.

Temperature	N/Ti (%)	Phases observed by XRD	
800		Anatase	
850		Anatase \gg rutile, TiN	
900		Anatase \gg rutile, TiN	
950	20	$Anatase > $ rutile, TiN	

and TiN, in addition to the peaks of anatase. The pattern of the $1000\,^{\circ}$ C sample showed that the peak intensity of TiN and rutile increased. The sample heated at $1000\,^{\circ}\text{C}$ for 1 h showed only peaks of TiN with a lattice constant of *a* = 0.423 nm, which is in close agreement with the reported TiN value of 0.4238 .^{[14](#page-4-0)} Table 1 summarizes the XRD and XPS results for the heat-treated samples. It was found that the concentration of nitrogen increased with increasing temperature.

Fig. 3 shows the TEM photographs of as-synthesized and heat-treated TiO₂ nanofibers at 800–1000 °C. As-synthesized $TiO₂$ nanofibers (Fig. 3(a)) showed a fibrous shape and the larger ones were 2–5 mm long and 100 nm wide. The heat-treated sample at $800\degree$ C (Fig. 3(b)) retained its fibrous shape but the fibers became shorter and changed to aggregates of small grains. (some of the grains are indicated by arrows). The length of the needle-like grains became short with increasing of the temperature from 900 to 1000° C (Fig. 3(c) and (d)). However, in the sample heated at 1000 °C for 1 h (Fig. 3(e)), the grains sintered together while retaining a fibrous shape. From the highly magnified image (Fig. $3(e')$), it was found that the crystallites were well sintered together and the boundaries between crystallites decreased comparing with the sample heated at 1000 ◦C with no holding time (Fig. 3(d)), expecting that the sample heated at $1000\degree$ C for 1 h has high tensile strength.

3.2. Fabrication and mechanical properties of composites

[Fig.](#page-3-0) 4 shows the XRD patterns of Composite A (containing needle-like TiN particles), Composite B (rounded TiN particle), and the $Si₃N₄$ -sintered body by hot-pressing at 1850 °C for 1 h in N_2 atmosphere. All the samples had relative densities of 96–98%. It was found that Composite A consisted of α -Si₃N₄ and TiN with a small amount of β -Si₃N₄. Composite B showed an XRD pattern similar to that of Composite A, but the peaks of β -Si₃N₄ were slightly higher than those in the pattern of Composite A. On the other hand, monolithic $Si₃N₄$ consisted mostly of β -Si₃N₄ with a small amount of α -Si₃N₄. In general, sintering of $Si₃N₄$ ceramic occurs through a process in which an intergranular liquid phase is formed by additives and $SiO₂$, present in the $Si₃N₄$ powder (liquid phase sintering), resulting in a sintered body consisting mainly of β -Si₃N₄.^{[15](#page-4-0)} Although it was reported that an α -Si₃N₄ ceramic body was fabricated by spark plasma sintering to shorten the sintering time, 16 it is difficult to obtain α -Si₃N₄ ceramic using conventional methods, such as hot pressing, hot isostatic pressing, and pressureless sintering. Results of the present study [\(Table](#page-3-0) 2) indicate that the presence of TiN particles inhibits the transformation to β -Si₃N₄ but the mechanism

Fig. 3. TEM photographs of $TiO₂$ nanofibers and nitrided ones. Photos (a) through (e) are same as those in [Fig.](#page-1-0) 2, and (e') is a magnified image of (e) . Arrows in (b) shows the grains consisting of needle-like particles.

inhibiting the transformation is not clear. [Fig.](#page-3-0) 5 shows SEM photographs of the polished and fracture surface of Composite A. In the polished surface image, TiN particles, shown as gray parts, were dispersed in the composites but some agglomerations several nanometers in size were observed. At the fracture surface, needle-like TiN particles were observed [\(Fig.](#page-3-0) 5(b)), showing that TiN particles maintained the needle shape during sintering.

[Fig.](#page-3-0) 6 shows the plots of fracture strength, toughness, and hardness of the samples. The fracture strengths of the Composites A and B are about 230 and 350 MPa, respectively, and are

Fig. 4. XRD patterns of (a) Composites A and (b) B, and (c) $Si₃N₄$.

less than that of the reference sample of monolithic $Si₃N₄$. The reported fracture strength of α -Si₃N₄ is 300–420 MPa,^{[16](#page-4-0)} which is less than the typical value of β -phase (600–800 MPa). The low strength of Composites A and B is because the matrices of the composites are primarily composed of α -Si₃N₄. Fracture toughness of Composite A (needle-like TiN) was equivalent to that of monolithic $Si₃N₄$, taking into consideration the scattering of the value. There was no remarkable improvement in the fracture toughness of Composite A as compared to that of Com-

Fig. 5. SEM photographs of (a) polished and (b) fracture surface of Composite A. Arrows in photographs denote TiN grains.

Fig. 6. Plots of (a) fracture strength, (b) fracture toughness, and (c) the Vickers hardness of the Composites A and B and monolithic Si₃N₄. Error bars show standard deviation.

Table 2 Composition and observed phases of sintered samples.

Sample	TiN (vol $\%$)	Shape of TiN	Phases observed by XRD
Composite A		Needle like	TiN, α -Si ₃ N ₄ $\gg \beta$ -Si ₃ N ₄
Composite B		Rounded	TiN, α -Si ₃ N ₄ $\gg \beta$ -Si ₃ N ₄
Monolithic $Si3N4$			β -Si ₃ N ₄ $\gg \alpha$ -Si ₃ N ₄

posite B, possibly because of the presence of agglomerations of TiN. Hardness of Composite A improved in comparison to that of both Composite B and monolithic $Si₃N₄$, showing that the needle-like TiN effectively improved the hardness.

4. Summary

Si3N4 composites containing needle-like TiN particles were fabricated by hot pressing. The needle-like TiN powder was synthesized by NH_3 nitridation of TiO₂ nanofibers obtained by hydrothermal treatment. The obtained composites consisted of α -Si₃N₄ and TiN, with a small amount of β -Si₃N₄, suggesting that the presence of TiN delays the phase transformation of $Si₃N₄$. Fracture strength of the composites was lesser than that of monolithic β -Si₃N₄ ceramic. However, fracture toughness was equivalent to that of monolithic β -Si₃N₄ ceramic and hardness improved in comparison to that of β -Si₃N₄.

Acknowledgments

This study was financially supported by GCOE program of Catalysis as the Basis for the Innovation in Materials Science (Hokkaido University) and Promoting Technological Seeds program of Research for Japan Science and Technology Agency (JST).

References

- 1. Bellosi A, Tampieri A, Liu YZ. Oxidation behavior of electroconductive Si3N4–TiN composites. *Mater Sci Eng A* 1990;**127**(1):115–22.
- 2. Bellosi A, Guicciardi S, Tampieri A. Development and characterization of electroconductive Si3N4–TiN composites. *J Eur Ceram Soc* 1992;**9**:83–92.
- 3. Tatami J, Chen IW, Yamamoto Y, Komastu M, Komeya K, Kim DK, Wakihara T, Meguro T. Fracture resistance and contact damage of TiN particle reinforced Si3N4 ceramics. *J Ceram Soc Jpn* 2006;**114**(1335):1049–53.
- 4. Kawano S, Takahashi J, Shimada S. Fabrication of TiN/Si3N4 ceramics by spark plasma sintering of $Si₃N₄$ particles coated with nanosized TiN

prepared by controlled hydrolysis of Ti(O–i–C3H7). *J Am Ceram Soc* 2003;**86**(4):701–5.

- 5. Bojarski Z, Wokulska K, Wokulski Z. Growth morphology of titanium nitride whiskers. *J Cryst Growth* 1981;**52**(April):290–5.
- 6. Kamiya K, Yoko T, Bessho M. Nitridation of TiO₂ fibers prepared by the sol–gel method. *J Mater Sci* 1987;**22**(3):937–41.
- 7. Krishnarao RV, Subrahmanyam J, Yadagiri M. Formation of TiN whiskers through carbothermal reduction of TiO₂. *J Mater Sci* 2002;37(8): 1693–9.
- 8. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Formation of titanium oxide nanotube. *Langmuir* 1998;**14**(12):3160–3.
- 9. Kasuga T. Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties. *Thin Solid Films* 2006;**496**(1):141–5.
- 10. Tanaike O, Kiyono H, Shimada S, Toyoda M, Tsumura T. Ammonia-treated titania as an anode material of lithium-ion battery with high-rate capability. *ECS Trans* 2009;**16**:151–6.
- 11. Yuan ZY, Su BL. Titanium oxide nanotubes, nanofibers and nanowires. *Colloids Surf Physicochem Eng Aspects* 2004;**241**(1–3):173–83.
- 12. Sakai T, Kiyono H, Shimada S. Kinetics and mechanism of formation of GaN from β-Ga₂O₃ by NH₃. *Mater Res Soc Symp Proc* 2009:1202–10.
- 13. ICDD 47-0561.
- 14. ICDD 87-0633.
- 15. Riley FL. Silicon nitride and related materials. *J Am Ceram Soc* 2000;**83**(2):245–65.
- 16. Chen F, Shen Q, Yan FQ, Zhang LM. Spark plasma sintering of alpha-Si3N4 ceramics with MgO–AlPO4 assintering additives. *Mater Chem Phys* 2008;**107**(1):67–71.